Duke University + Posit
An open-source scientific and technical publishing system that builds on standard markdown with features essential for scientific communication.
Pandoc Markdown
Jupyter Kernels
Dozens of Output Formats
Specialized Project Types
you can weave together narrative and code to produce elegantly formatted output as documents, web pages, blog posts, books and more, with…
Computations: Jupyter (and Knitr and ObservableJS)
Markdown: Pandoc
with many enhancements
Output: Documents, presentations, websites, books, blogs
Render to output formats:
# ipynb notebook
quarto render notebook.ipynb
quarto render notebook.ipynb --to docx
# plain text qmd
quarto render notebook.qmd
quarto render notebook.qmd --to pdf
Live preview server (re-render on save):
.qmd
Filessnowdash.ipynb
---
title: Dashing through the snow ❄️
format: revealjs
jupyter: python3
---
```{python}
import pandas as pd
from datetime import datetime
import itables as itables
import plotly.express as px
import plotly.graph_objects as go
```
```{python}
#| tags: [parameters]
today_string = "2023-12-08"
```
```{python}
#| message: false
meribel = pd.read_csv("data/Meribel.csv")
meribel['datetime'] = pd.to_datetime(meribel['datetime'])
stations = pd.read_csv("data/stations.csv")
```
```{python}
today_date = pd.to_datetime(today_string)
```
```{python}
n_snow = meribel[meribel['snow'] > 0].shape[0]
n_below_freezing = meribel[meribel['temp'] < 32].shape[0]
def below_freezing_color(n):
if n > 5:
return "danger"
elif 3 < n <= 5:
return "warning"
else:
return "light"
n_below_freezing_color = below_freezing_color(n_below_freezing)
```
## Snow fall
```{python}
#| label: fig-snow-fall
#| fig-cap: Snow fall in Meribel
#| scrolled: true
# Create figure
fig = go.Figure()
# Add lines for temp, tempmin, tempmax
fig = fig.add_trace(go.Scatter(x=meribel['datetime'], y=meribel['snow'], mode='lines', name='temp', line=dict(color='black')))
# Add vertical dashed line for today's date
fig = fig.add_shape(
go.layout.Shape(
type="line",
x0=today_date,
x1=today_date,
y0=min(meribel['snow']),
y1=max(meribel['snow']),
line=dict(
color="#ae8b2d",
width=1.5,
dash="dash"
)
)
)
# Set layout including axis labels and y-axis range
fig = fig.update_layout(
xaxis_title="Date",
yaxis_title="Snow fall",
)
# Show the plot
fig.show()
```
# Data
```{python}
#| title: Data
# Selecting all columns except 'name'
meribel = meribel.drop(columns=['name'])
# Displaying the DataFrame as an interactive table with pagination using itables
itables.options.classes = ["display", "table", "table-bordered", "table-striped"]
itables.show(meribel)
```
.qmd
FilesEditable with any text editor (extensions for VS Code, Neovim, and Emacs)
Cells always run in the same order
Integrates well with version control
Cache output with Jupyter Cache or Quarto freezer
Lots of pros and cons visa-vi traditional .ipynb
format/editors, use the right tool for each job
Notebook workflow (no execution occurs by default):
Plain text workflow (.qmd
=> .ipynb
then execute cells):
A new output format for easily creating
dashboards from notebooks
Dashboard: https://mine.quarto.pub/dashing-through-snow-py
Code: https://github.com/mine-cetinkaya-rundel/dashing-through-snow
Navigation Bar and Pages — Icon, title, and author along with links to sub-pages (if more than one page is defined).
Sidebars, Rows & Columns, and Tabsets — Rows and columns using markdown heading (with optional attributes to control height, width, etc.). Sidebars for interactive inputs. Tabsets to further divide content.
Cards (Plots, Tables, Value Boxes, Content) — Cards are containers for cell outputs and free form markdown text. The content of cards typically maps to cells in your notebook or source document.
All of these components can be authored and customized within notebook UI or plain text qmd.
```{python}
#| title: GDP and Life Expectancy
import plotly.express as px
df = px.data.gapminder()
px.scatter(
df, x="gdpPercap", y="lifeExp",
animation_frame="year", animation_group="country",
size="pop", color="continent", hover_name="country",
facet_col="continent", log_x=True, size_max=45,
range_x=[100,100000], range_y=[25,90]
)
```
## Row
```{python}
#| component: valuebox
#| title: "Current Price"
dict(icon = "currency-dollar",
color = "secondary",
value = get_price(data))
```
```{python}
#| component: valuebox
#| title: "Change"
change = get_change(data)
dict(value = change['amount'],
icon = change['icon'],
color = change['color'])
```
## Column
```{python}
#| title: Population
px.area(df, x="year", y="pop",
color="continent",
line_group="country")
```
```{python}
#| title: Life Expectancy
px.line(df, x="year", y="lifeExp",
color="continent",
line_group="country")
```
::: {.card}
Gapminder combines data from multiple sources
into unique coherent time-series that can’t be
found elsewhere. Learn more about the Gampminder
dataset at <https://www.gapminder.org/data/>.
:::
Cards provide an Expand button which appears at bottom right on hover:
Dashboards are typically just static HTML pages so can be deployed to any web server or web host.
Static | Rendered a single time (e.g. when underlying data won’t ever change) |
Scheduled | Rendered on a schedule (e.g. via cron job) to accommodate changing data. |
Parameterized | Variations of static or scheduled dashboards based on parameters. |
Interactive | Fully interactive dashboard using Shiny (requires a server for deployment). |
Add a parameters tag to the first cell (based on papermill) :
Use the -P
command line option to vary the parameter:
https://quarto.org/docs/dashboards/interactivity/shiny-python/
For interactive exploration, some dashboards can benefit from a live Python backend
To do this with Quarto Dashboards, add interactive Shiny components
Deploy with or without a server!
About Quarto | https://quarto.org/ |
Quarto Dashboards | https://quarto.org/docs/dashboards/ |
Shiny for Python | https://shiny.posit.co/py/ |
https://mine.quarto.pub/quarto-dashboards-pydata/